Examples of Chebyshev Sets in Matrix Spaces

A. R. Alimov*
Department of Mechanics and Mathematics, The Moscow Lomonosow State University, 119899 Moscow, Russia
and
H. Berens
Mathematical Institute, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
Communicated by E. W. Cheney

Received October 9, 1997; accepted in revised form August 11, 1998

Let A be a matrix in $\mathbb{C}^{n \times n}$ and let $U \Sigma V^{*}$ be its singular value decomposition. The authors prove that for each $1 \leqslant k \leqslant n$ the set $\mathscr{S}_{1}^{(k)}=\left\{S \in \mathbb{C}^{n \times n}\right.$: $\left.\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} \sigma_{j_{1}}(S) \sigma_{j_{2}}(S) \cdots \sigma_{j_{k}}(S) \leqslant 1\right\}$ is a Chebyshev set in $\mathbb{C}^{n \times n}$ endowed with the spectral norm and that the metric projection is globally Lipschitz-continuous. (C) 1999 Academic Press

In the 1980s the senior author studied various problems on matrix approximation; he was, in particular, interested in Chebyshev sets and suns. Approximation in matrix spaces proved to be rich in providing simple, but impressive examples as the papers $[1,4,5,7]$ show. We want to take up the results in [3,4], extend, and re-prove them.

We denote by $\mathbb{C}^{n \times m}$ the vector space of complex $n \times m$ matrices over $\mathbb{C}, n, m \in \mathbb{N}$, with elements A, B, \ldots. For $A \in \mathbb{C}^{n \times p}$ and $B \in \mathbb{C}^{p \times m}, n, m$, $p \in \mathbb{N}, A^{*}$ denotes the adjoint of A in $\mathbb{C}^{p \times n}$ and $A B$ the matrix product of A and B in $\mathbb{C}^{n \times m}$. Instead of $\mathbb{C}^{n \times 1}$ we write \mathbb{C}^{n} the vector space of complex column vectors; we also write z, u, \ldots to denote its elements.

By l_{n}^{2} we denote \mathbb{C}^{n} endowed with the Euclidian norm $|\cdot|_{2}$, and by $\mathscr{L}\left(l_{n}^{2}\right)$ the vector space of linear transformations of l_{n}^{2} into itself. $\mathscr{L}\left(l_{n}^{2}\right)$ can be identified with $\mathbb{C}^{n \times n}$ endowed with the l^{2}-operator norm, where $A \in \mathbb{C}^{n \times n}$ acts on $z \in \mathbb{C}^{n}$ via the matrix product $A z$. Since it will not lead to

[^0]any ambiguity, in the following we shall write \mathbb{C}^{n} and $\mathbb{C}^{n \times n}$ instead of l_{n}^{2} and $\mathscr{L}\left(l_{n}^{2}\right)$, respectively.

For an $A \in \mathbb{C}^{n \times n}$, we denote its singular value decomposition (SVD) by $U \Sigma V^{*}, U$ and V are unitary matrices in $\mathbb{C}^{n \times n}$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{n} \geqslant 0 . \Sigma$ is uniquely determined by A; its elements are the so-called singular values of A; to indicate the dependence on A, we will write $\Sigma(A)$ and $\sigma_{1}(A), \sigma_{2}(A), \ldots, \sigma_{n}(A)$, respectively. If A is non-singular, then $U V^{*}$ is uniquely defined.

Here we will be interested in best approximation on $\mathbb{C}^{n \times n}$ w.r.t. the spectral norm. It will, however, be appropriate to consider more generally unitarily invariant norms $\|\cdot\|$; in particular, we will consider the Schatten p-norms, where

$$
\text { for all } \quad A \in \mathbb{C}^{n \times n}, \quad\|A\|_{p}^{p}=\|\Sigma\|_{p}^{p}=\sum_{j=1}^{n} \sigma_{j}^{p} .
$$

For $p=1$ we speak of the (classical) Schatten norm $\|\cdot\|_{1}$, while for $p=\infty,\|\cdot\|_{\infty}$ just denotes the spectral norm on $\mathbb{C}^{n \times n}$. Introducing on $\mathbb{C}^{n \times n}$ the sesqui-linear form

$$
\text { for all } \quad A, B \in \mathbb{C}^{n \times n}, \quad\langle A, B\rangle=\operatorname{trace} A^{*} B,
$$

$\mathbb{C}^{n \times n}$ becomes an inner product space isomorphic to $\mathbb{C}^{n^{2}}$. The associated norm $\|\cdot\|_{2}$, the so-called Frobenius norm, is nothing but the 2-norm

$$
\text { for all } A \in \mathbb{C}^{n \times n}, \quad \sum_{j, k=1}^{n}\left|a_{j k}\right|^{2}=\|A\|_{2}^{2}=\|\Sigma\|_{2}^{2}=\sum_{j=1}^{n} \sigma_{j}^{2} .
$$

For $k=1,2, \ldots, n$, we define

$$
\mathscr{S}_{1}^{(k)}=\left\{S \in \mathbb{C}^{n \times n}: \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{k} \leqslant n} \sigma_{j_{1}}(S) \sigma_{j_{2}}(S) \cdots \sigma_{j_{k}}(S) \leqslant 1\right\} .
$$

If $k=1, \mathscr{S}_{1}^{(1)}$ coincides with the l_{1}-unit ball in $\mathbb{C}^{n \times n}$; i.e., $\mathscr{S}_{1}^{(1)}=\left\{S \in \mathbb{C}^{n \times n}\right.$: $\left.\|S\|_{1} \leqslant 1\right\}$, while for $k=n \mathscr{S}_{1}^{(n)}\left\{S \in \mathbb{C}^{n \times n}:|\operatorname{det} S| \leqslant 1\right\}$. It was proved in [4], that $\mathscr{S}_{1}^{(n)}$ is a Chebyshev set in $\mathbb{C}^{n \times n}$ w.r.t. $\|\cdot\|_{\infty}$ and that the metric projection $P_{\mathscr{S}_{1}^{(n)}}^{\infty}$ is globally Lipschitz-continuous. We will re-prove the result and extend it; our proof is different and more elementary.

Theorem. For $1 \leqslant k \leqslant n$, the set $\mathscr{S}_{1}^{(k)}$ is a Chebsyshev set in $\mathbb{C}^{n \times n}$ w.r.t. the spectral norm.

More precisely, if $A \in \mathbb{C}^{n \times n} \backslash \mathscr{S}_{1}^{(k)}$ and if $U \Sigma V^{*}$ is a SVD of A, then the distance of A from $\mathscr{S}_{1}^{(k)}$ is given by

$$
d^{(k)}=\min \left\{t>0: \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{k} \leqslant n}\left(\sigma_{j_{1}}-t\right)_{+}\left(\sigma_{j_{2}}-t\right)_{+} \cdots\left(\sigma_{j_{k}}-t\right)_{+}=1\right\} .
$$

With $r \in \mathbb{N}, k \leqslant r \leqslant n$, such that $\sigma_{r+1}<d^{(k)} \leqslant \sigma_{r}\left(\sigma_{n+1}=0\right)$, and

$$
\tilde{\Sigma}^{(k)}=\operatorname{diag}\left[\sigma_{1}-d^{(k)}, \ldots, \sigma_{r}-d^{(k)}, 0, \ldots, 0\right],
$$

$\tilde{A}^{(k)}=U \tilde{\Sigma}^{(k)} V^{*}$ is the unique element of best approximation of A in $\mathscr{S}_{1}^{(k)}$.
Moreover, the metric projection onto $\mathscr{S}_{1}^{(k)}$ is globally Lipschitz-continuous.
Before we get into proving the theorem, let us remark that the element of best approximation (briefly, el. b. appr.) is well-defined. It follows from the result stated below; although it is well known, we consider it worthwile to point this out.

Let $A \in \mathbb{C}^{n \times n}, A \neq 0$, and let $U \Sigma V^{*}$ and $X \Sigma Y^{*}$ be two SVDs of A, where

$$
\Sigma=\operatorname{diag}(\underbrace{\sigma_{1}, \ldots, \sigma_{1}}_{n_{1}}, \underbrace{\sigma_{2}, \ldots, \sigma_{2}}_{n_{2}}, \ldots, \underbrace{\sigma_{r}, \ldots, \sigma_{r}}_{n_{r}}, 0, \ldots, 0),
$$

$n_{1}+\cdots+n_{r}=\operatorname{rank}(A)$. Then there exist unitary matrices P and Q in $\mathbb{C}^{n \times n}$, such that $X=U P$ and $Y=V Q$, and

$$
P=\operatorname{diag}\left(W_{1}, \ldots, W_{r}, P_{0}\right) \quad \text { and } \quad Q=\operatorname{diag}\left(W_{1}, \ldots, W_{r}, Q_{0}\right),
$$

where P_{0}, Q_{0}, and $W_{j}, 1 \leqslant j \leqslant r$, are unitary matrices in $\mathbb{C}^{n_{0} \times n_{0}}, n_{0}+$ $\operatorname{rank}(A)=n$, and in $\mathbb{C}^{n_{j} \times n_{j}}$, respectively. If A is nonsingular then $U V^{*}=X Y^{*}$.

To prove the theorem it suffices to consider Σ instead of A and to prove that $\widetilde{\Sigma}^{(k)}$ is the el. b. appr. of Σ in $\mathscr{S}_{1}^{(k)}$. Concerning the proof itself, we will prove more strongly that the strict Kolmogorov condition, namely,

$$
\begin{equation*}
\text { for all } S \in \mathscr{S}_{1}^{(k)}, S \neq \tilde{\Sigma}^{(k)}, \min _{\substack{|q|_{2}=1 ; \\ q \in \mathbb{C}^{r} \times\{0\}^{n-r}}} \mathfrak{R} q^{*}\left(S-\widetilde{\Sigma}^{(k)}\right) q<0 \tag{1}
\end{equation*}
$$

holds, which implies uniqueness.
The following remark is in order. Let X be real or complex, normed vector space with norm $|\cdot|_{X}$, and let K be a (closed) subset of X. We denote the metric projection of X onto K by P_{K}. For $x \in X \backslash K$ and $k \in P_{K}(x), k$ is said to be a solar point of x in K, if $k \in P_{K}\left(x_{t}\right)$ for each point x_{t} on the ray from k through x; clearly, $x_{t}=k+t(x-k), t \in \mathbb{R}_{+}$. If for some subset K of X each $x \in X \backslash K$ has a solar point, then K is said to be a sun in X in the
sense of L. P. Vlasov. Solar points are best described by use of the semiinner product $\langle\cdot, \cdot\rangle_{s}$ defined on $X \times X$;
for $\quad x, y \in X$,

$$
\langle y, x\rangle_{s}=\lim _{t \rightarrow 0+} \frac{|x+t y|_{X}^{2}-|x|_{X}^{2}}{2 t}=\max \{\mathfrak{R}\langle w, y\rangle: w \in \Phi(x)\},
$$

Φ is the duality map on X; i.e., for each $x \in X: \Phi(x)=\left\{w \in X^{*}: \mathfrak{R}\langle w, x\rangle=\right.$ $\left.|x|_{X}^{2}=|w|_{X^{*}}^{2}\right\}$. In the definition we consider X to be a vector space over the reals; this is often done in approximation theory. To distinguish the complex space X from the space X considered as a real vector space, one usually writes X_{r}-the subscript, however, will be dropped, when there will be no confusion. If X is an inner product space, the semi-inner products reduces to the inner product. The semi-inner product has many properties similar to the inner product, but it is in general far more restrictive, see, e.g., [2] for details.

To get back to the characterization of solar points, under the conditions given above, a point $k \in K$ is a solar point for $x \in X \backslash K$ if and only if

$$
\begin{equation*}
\text { for all } \quad k^{\prime} \in K, \quad 0 \leqslant\left\langle k-k^{\prime}, x-k\right\rangle_{s} ; \tag{2}
\end{equation*}
$$

the condition can be, and will be, interpreted as a Kolmogrov condition. All this is well-known and well documented.

To conclude the remark, in the finite dimensional setting a Chebyshev set is a Chebyshev sun, and the metric projection is continuous.

The proof of the theorem is based upon the following lemmas.

Lemma 1. Let $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1}=\cdots=\sigma_{r}>\sigma_{r+1} \geqslant \cdots \geqslant \sigma_{n} \geqslant 0$. Then

$$
\Phi_{\infty}(\Sigma)=\operatorname{co}\left\{q q^{*} \in \mathbb{C}^{r \times r}: q \in \mathbb{C}^{r} \times\{0\}^{n-r} \text { and }|q|_{2}^{2}=\sigma_{1}\right\},
$$

"co" means the (closed) convex hull, and consequently,

$$
\text { for all } \quad B \in \mathbb{C}^{n \times n}, \quad\langle B, \Sigma\rangle_{\infty}=\max _{\substack{|q|_{2}^{2}=\sigma_{1} \\ q \in \mathbb{C}^{r} \times\{0\}_{n-r}}} \Re q^{*} B q \text {. }
$$

If $A \in \mathbb{C}^{n \times n}$ has $U \Sigma V^{*}$ to be its $S V D$, then $\Phi_{\infty}(A)=U \Phi_{\infty}(\Sigma) V^{*}$.
For a proof see [3]. Note that we used the subscript ∞ to indicate that we consider the spectral norm on $\mathbb{C}^{n \times n}$.

Our second lemma is concerned with unitarily invariant norms in general.

Lemma 2. For any unitarily invariant norm $\|\cdot\|$ on $\mathbb{C}^{n \times n}$

$$
\text { for all } \quad A, B \in \mathbb{C}^{n \times n}, \quad\|\Sigma(A)-\Sigma(B)\| \leqslant\|A-B\| \text {. }
$$

A proof of the basic inequality is, e.g. given in the monograph of R. A. Horn and Ch. R. Johnson [6, Theorem 7.4.51]. For the Frobenius norm the inequality is known as the inequality of Hoffmann and Wielandt.

Proof of the Theorem. For the proof we drop the superscript (k); this will not lead to any confusion.

We shall first prove uniqueness. Under the assumption of the theorem we have that

$$
\Sigma-\tilde{\Sigma}=\operatorname{diag}\left[d, \ldots, d, \sigma_{r+1}, \ldots, \sigma_{n}\right], \quad \sigma_{r+1}<d \leqslant \sigma_{r}
$$

where d denotes the distance of Σ from \mathscr{S}_{1}. By Lemma 1, Kolmogorov's condition (2) reads
for all $S \in \mathscr{S}_{1}, S \neq \tilde{\Sigma}$,

$$
\begin{equation*}
0<\langle\tilde{\Sigma}-S, \Sigma-\tilde{\Sigma}\rangle_{\infty}=d . \max _{\substack{\left.q \in \mathbb{C}^{r} \times 0\right\}^{n-r} \\|q|_{2}=1}} \mathfrak{R} q^{*}(\tilde{\Sigma}-S) q . \tag{3}
\end{equation*}
$$

We will use Lemma 2 to conclude that

$$
\begin{equation*}
\langle\tilde{\Sigma}-\Sigma(S), \Sigma-\tilde{\Sigma}\rangle_{\infty} \leqslant\langle\tilde{\Sigma}-S, \Sigma-\tilde{\Sigma}\rangle_{\infty} \tag{4}
\end{equation*}
$$

Indeed, $\|\Sigma-\tilde{\Sigma}+t(\tilde{\Sigma}-\Sigma(S))\|_{\infty} \leqslant\|\Sigma-\tilde{\Sigma}+t(\tilde{\Sigma}-S)\|_{\infty}$ for all $t \in \mathbb{R}_{+}$, and the inequality follows.

Let us assume that $S \in \mathscr{S}_{1}$ is such that $\Sigma(S) \neq \tilde{\Sigma}$. We claim that

$$
\begin{equation*}
0<\max _{\substack{q \in \mathbb{C}^{r} \times\{0\}_{n-r} \\ \mid q q_{2}=1}} \mathfrak{R} q^{*}(\tilde{\Sigma}-\Sigma(S)) q . \tag{5}
\end{equation*}
$$

Since

$$
\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} \sigma_{j_{1}}(S) \cdots \sigma_{j_{k}}(S) \leqslant 1 \quad \text { and } \quad \sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} \tilde{\sigma}_{j_{1}} \cdots \tilde{\sigma}_{j_{k}}=1,
$$

there is at least one index in $\{1, \ldots, r\}$, say, j_{0} for which $\sigma_{j_{0}}(S)<\tilde{\sigma}_{j_{0}}$. For otherwise, for all $j \tilde{\sigma}_{j} \leqslant \sigma_{j}(S)$, but then

$$
1=\sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} \tilde{\sigma}_{j_{1}} \cdots \tilde{\sigma}_{j_{k}} \leqslant \sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n} \sigma_{j_{1}}(S) \cdots \sigma_{j_{k}}(S) \leqslant 1,
$$

implies that for all $j \sigma_{j}(S)=\tilde{\sigma}_{j}$, contradicting the condition $\Sigma(S) \neq \tilde{\Sigma}$. Hence $\sigma_{j_{0}}(S)<\tilde{\sigma}_{j_{0}}$ and for $q=e_{j_{0}}$, the j_{0} 's natural basis element in \mathbb{C}^{r}, $e_{j_{0}}^{*}(\tilde{\Sigma}-\Sigma(S)) e_{j_{0}}=\tilde{\sigma}_{j_{0}}-\sigma_{j_{0}}(S)>0$, which proves (5). From (5) and (4) we obtain (3).

Next assume that $S \in \mathscr{S}_{1}$ is such that $S \neq \tilde{\Sigma}$, but $\Sigma(S)=\tilde{\Sigma}$. Assume Kolmogorov's condition (3) does not hold; i.e.,

$$
\begin{equation*}
\text { for all } q \in \mathbb{C}^{r} \times\{0\}^{n-r}, \quad \mathfrak{R} q^{*}(\tilde{\Sigma}-S) q \leqslant 0 \text {. } \tag{6}
\end{equation*}
$$

Setting $S=B+i C$ with B and C Hermitian $\left(B=\left(S+S^{*}\right) / 2\right.$ and $C=-i\left(S-S^{*}\right) / 2$), then (6) just reads

$$
\text { for all } \quad q \in \mathbb{C}^{r}, \quad q^{*}\left(\tilde{\Sigma}_{r}-B_{r}\right) q \leqslant 0 \quad \text { or } \quad q^{*}\left(B_{r}-\tilde{\Sigma}_{r}\right) q \geqslant 0 \text {; }
$$

i.e., the matrix $B_{r}-\tilde{\Sigma}_{r}$ is positive semi-definite, where the subscript r indicates that we restrict the matrix to the r th principal submatrix. This forces $\tilde{\sigma}_{j} \leqslant b_{j j}$ for $1 \leqslant j \leqslant r$, and consequently,

$$
\|\tilde{\Sigma}\|_{2}^{2}=\sum_{j=1}^{r} \tilde{\sigma}_{j}^{2} \leqslant \sum_{j=1}^{r} \tilde{\sigma}_{j}^{2}+\sum_{j=r+1}^{n} b_{j j}^{2}+\sum_{j \neq k}\left|b_{j k}\right|^{2} \leqslant\|B\|_{2}^{2} \leqslant\|S\|_{2}^{2}=\|\tilde{\Sigma}\|_{2}^{2} .
$$

Hence, all $b_{j j}$ vanish for $r+1 \leqslant j \leqslant n$ as well as all $b_{j k}, j \neq k$; i.e., $B=\tilde{\Sigma}$.
Note that $\mathfrak{R}\langle\Sigma, i C\rangle=0$, since C is Hermitian. It follows that $\|S\|_{2}^{2}=$ $\|\tilde{\Sigma}+i C\|_{2}^{2}=\|\tilde{\Sigma}\|_{2}^{2}+\|C\|_{2}^{2}=\|\Sigma(S)\|_{2}^{2}=\|\tilde{\Sigma}\|_{2}^{2}$, hence $C=0$, and consequently $S=\tilde{\Sigma}$ a contradiction.

Thus, the strict Kolmogorov condition (1) is satisfied in both cases, proving the first part of the theorem. It remains to prove that the metric projection is globally Lipschitz-continuous. As we remarked above, it is continuous, but we have more.

Let us at first consider diagonal matrices only, say, Σ and Σ^{\prime} not in \mathscr{S}_{1} with el. b. appr. $\tilde{\Sigma}$ and $\tilde{\Sigma}^{\prime}$ and distances d and d^{\prime}, respectively. Note that for any $1 \leqslant j \leqslant n$

$$
\left|\tilde{\sigma}_{j}-\tilde{\sigma}_{j}^{\prime}\right|=\left|\left(\sigma_{j}-d\right)_{+}-\left(\sigma_{j}^{\prime}-d^{\prime}\right)_{+}\right| \leqslant\left|\sigma_{j}-\sigma_{j}^{\prime}\right|+\left|d-d^{\prime}\right|,
$$

and consequently,

$$
\left\|\tilde{\Sigma}-\tilde{\Sigma}^{\prime}\right\|_{2} \leqslant\left\|\Sigma-\Sigma^{\prime}\right\|_{2}+\sqrt{n}\left|d-d^{\prime}\right|,
$$

but $\left|d-d^{\prime}\right| \leqslant\left\|\Sigma-\Sigma^{\prime}\right\|_{\infty} \leqslant\left\|\Sigma-\Sigma^{\prime}\right\|_{2}$, giving

$$
\begin{equation*}
\left\|\tilde{\Sigma}-\tilde{\Sigma}^{\prime}\right\|_{2} \leqslant 2 \sqrt{n}\left\|\Sigma-\Sigma^{\prime}\right\|_{2} . \tag{7}
\end{equation*}
$$

To consider the general situation, let A, A^{\prime} be two matrices in $\mathbb{C}^{n \times n} \backslash \mathscr{S}_{1}$. W.l.o.g., we may assume that $A=\Sigma, \Sigma$ as given above, and that $A^{\prime}=X E^{\prime} Y^{*}$. Then the metric projection of Σ and A^{\prime} are $\tilde{\Sigma}$ and $X \tilde{\Sigma}^{\prime} Y^{*}$, respectively. We have to estimate the difference

$$
\left\|\tilde{\Sigma}-X \tilde{\Sigma}^{\prime} Y^{*}\right\|
$$

w.r.t. some (unitarily invariant) norm, say the 2-norm again. By the triangular inequality

$$
\left\|\tilde{\Sigma}-X \tilde{\Sigma}^{\prime} Y^{*}\right\|_{2} \leqslant\left\|\tilde{\Sigma}-X \tilde{\Sigma} Y^{*}\right\|_{2}+\left\|X\left(\tilde{\Sigma}-\tilde{\Sigma}^{\prime}\right) Y^{*}\right\|_{2}
$$

For the second term of the right-hand side we have

$$
\left\|X\left(\tilde{\Sigma}-\tilde{\Sigma}^{\prime}\right) Y^{*}\right\|_{2}=\left\|\tilde{\Sigma}-\tilde{\Sigma}^{\prime}\right\|_{2} \leqslant 2 \sqrt{n}\left\|\Sigma-\Sigma^{\prime}\right\|_{2} \leqslant 2 \sqrt{n}\left\|\Sigma-A^{\prime}\right\|_{2} .
$$

The two estimates follow from (7) and Lemma 2, respectively.
To estimate the first term, we take advantage of an estimate obtained in [3].

Let Σ and $\tilde{\Sigma}$ and d be given as above, and let $\Sigma+E=X \Sigma Y^{*}$ be a perturbation of Σ so that its $S V D$ leaves the singular values unchanged. Then

$$
\left\|\tilde{\Sigma}-X \tilde{\Sigma} Y^{*}\right\|_{2} \leqslant\|E\|_{2}
$$

The estimate holds for any $\tilde{\Sigma}=\operatorname{diag}\left(\tilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{n}\right), \tilde{\sigma}_{1} \geqslant \cdots \geqslant \tilde{\sigma}_{n} \geqslant 0$, for which for $1 \leqslant j \leqslant l \leqslant n$ the inequality $\tilde{\sigma}_{j} \pm \tilde{\sigma}_{l} \leqslant \sigma_{j} \pm \sigma_{l}$ holds. In our case, $\tilde{\sigma}_{j}=\sigma_{j}-d$ for $1 \leqslant j \leqslant r$ and $\tilde{\sigma}_{j}=0$ for $r+1 \leqslant j \leqslant n$, where $\sigma_{r+1}<d \leqslant \sigma_{r}$.

As a consequence, we obtain

$$
\begin{aligned}
\left\|\tilde{\Sigma}-X \tilde{\Sigma} Y^{*}\right\|_{2} & \leqslant\left\|\Sigma-X \Sigma Y^{*}\right\|_{2} \leqslant\left\|\Sigma-X \Sigma^{\prime} Y^{*}\right\|_{2}+\left\|X\left(\Sigma^{\prime}-\Sigma\right) Y^{*}\right\|_{2} \\
& \leqslant 2\left\|\Sigma-A^{\prime}\right\|_{2} .
\end{aligned}
$$

Adding the two estimates, proves Lipschitz-continuity and completes the proof of the theorem.

Instead of the class $\mathscr{L}_{1}^{(k)}, 1 \leqslant k \leqslant n$, let us consider, more generally, the class
for $\delta>0$,

$$
\mathscr{S}_{\delta}^{(k)}=\left\{S \in \mathbb{C}^{n \times n}: \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{k} \leqslant n} \sigma_{j_{1}}(S) \sigma_{j_{2}}(S) \cdots \sigma_{j_{k}}(S) \leqslant \delta\right\} .
$$

It follows from above that $\mathscr{S}_{\delta}^{(k)}$ is a Chebyshev set in $\mathbb{C}^{n \times n}$ w.r.t. the spectral norm for each $\delta>0$. Moreover, repeating the proof of Lipschitzcontinuity of the metric projection, we see that it remains unchanged when we replace $P_{\mathscr{S}_{1}^{(k)}}^{\infty}$ by $P_{\mathscr{S}_{\delta}^{(k)}}^{\infty}$; i.e., $P_{\mathscr{S}_{1}^{(k)}}^{\infty}: \mathbb{C}^{n \times n} \rightarrow \mathscr{S}_{\delta}^{(k)}$ is globally Lipschitzcontinuous with Lipschitz constant independent of $1 \leqslant k \leqslant n$ and $\delta>0$.

If we allow δ to converge towards zero, the class $\mathscr{S}_{\delta}^{(k)}$ converges to

$$
\mathscr{S}_{0}^{(k)}=\left\{S \in \mathbb{C}^{n \times n}: \operatorname{rank} S \leqslant k-1\right\} .
$$

Trivially, $\mathscr{S}_{0}^{(1)}$ just reduces to $\{0\}$, while $\mathscr{S}_{0}^{(n)}$ is the class of singular matrices.

Let $A \in \mathbb{C}^{n \times n} \backslash \mathscr{S}_{0}^{(k)}$, and let $U \Sigma V^{*}$ be its SVD. Then, its singular value $\sigma_{k} \neq 0$ and $A \notin \mathscr{S}_{\delta}^{(k)}$ for $\delta>0$ sufficiently small. By the theorem the distance $\operatorname{dist}_{\infty}\left(A ; \mathscr{S}_{\delta}^{(k)}\right)$ is given by

$$
d_{\delta}^{(k)}=\min \left\{t>0: \sum_{1 \leqslant j_{1} \leqslant \cdots \leqslant j_{k} \leqslant n}\left(\sigma_{j_{1}}-t\right)_{+} \cdots\left(\sigma_{j_{k}}-t\right)_{+}=\delta\right\},
$$

and $U \widetilde{\Sigma}_{\delta}^{(k)} V^{*}$ is the unique el. b. appr. of A from $\mathscr{S}_{\delta}^{(k)}$ with

$$
\tilde{\Sigma}_{\delta}^{(k)}=\operatorname{diag}\left[\sigma_{1}-d_{\delta}^{(k)}, \ldots, \sigma_{k}-d_{\delta}^{(k)}, 0, \ldots, 0\right]
$$

Since $d_{\delta}^{(k)}$ converges to σ_{k} as $\delta \rightarrow 0+, \operatorname{dist}\left(A ; \mathscr{S}_{0}^{(k)}\right)=\sigma_{k}$ and $U \tilde{\Sigma}_{0}^{(k)} V^{*}$ is an el. b. appr. of A in $\mathscr{S}_{0}^{(k)}$, where $\tilde{\Sigma}_{0}=\operatorname{diag}\left[\sigma_{1}-\sigma_{k}, \ldots, \sigma_{k-1}-\sigma_{k}, 0, \ldots, 0\right]$. More precisely,

Corollary. For $1 \leqslant k \leqslant n \mathscr{S}_{0}^{(k)}$ is a sun in $\mathbb{C}^{n \times n}$ w.r.t. the spectral norm. If $A \in \mathbb{C}^{n \times n} \backslash \mathscr{S}_{0}^{(k)}$ and if $U \Sigma V^{*}$ is its $S V D$, then
$\operatorname{dist}_{\infty}\left(A ; \mathscr{S}_{0}^{(k)}\right)=\sigma_{k} \quad$ and $\quad U \widetilde{\Sigma}_{0}^{(k)} V^{*}$ is a solar point of A in $\mathscr{S}_{0}^{(k)}$,
$\tilde{\Sigma}_{0}^{(k)}$ being $\operatorname{diag}\left[\sigma_{1}-\sigma_{k}, \ldots, \sigma_{k-1}-\sigma_{k}, 0, \ldots, 0\right]$.
In addition, $\mathbb{C}^{n \times n} \ni A=U \Sigma V^{*} \mapsto U \widetilde{\Sigma}_{0}^{(k)} V^{*}$ is a Lipschitz-continuous selection of $P_{\mathscr{S}_{0}^{(k)}}^{\infty}$.

This re-proves results in [3, 4]. In this context we would like to add the following observation.

As we remarked above, $\mathscr{S}_{1}^{(1)}$ is just equal to the l_{1}-unit ball $\bar{b}_{1}^{(1)}(0)$ of $\mathbb{C}^{n \times n} . \mathscr{S}_{1}^{(1)}$ being a Chebyshev set in $\mathbb{C}^{n \times n}$ w.r.t. $\|\cdot\|_{\infty}$ then means that for each $A \in \mathbb{C}^{n \times n} \backslash \mathscr{S}_{1}^{(1)}$ the distance ball $b_{\mathscr{S}_{1}^{(1)}}^{(\infty)}(A)$ of A touches $\bar{b}_{1}^{(1)}(0)$ exactly at $P_{\mathscr{S}_{1}^{(1)}}(A)-b_{\mathscr{S}_{1}^{(1)}}^{(\infty)}(A)$ denotes the closed ball centered at A with radius $\operatorname{dist}_{\infty}\left(A ; \mathscr{S}_{1}^{(1)}\right)$. Interpreting this statement right, leads to the following.

Corollary. The l_{∞}-unit ball $\bar{b}_{1}^{(\infty)}(0)=\left\{S \in \mathbb{C}^{n \times n}: \sigma_{1}(S) \leqslant 1\right\}$ is a Chebyshev set in $\mathbb{C}^{n \times n}$ w.r.t. the Schatten 1-norm. Moreover, the metric projection is globally Lipschitz-continuous.

We conclude our investigation with the following remarks. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian; i.e., $A=U \Lambda U^{*}, \Lambda=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ and U unitary, where the λ_{j} 's are the eigenvalues of A counting their multiplicities and ordered such that $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \cdots \geqslant\left|\lambda_{n}\right| \geqslant 0$. The selected el.'s b. appr. of A in the classes $\mathscr{S}_{1}^{(k)}$ and $\mathscr{S}_{0}^{(k)}, 1 \leqslant k \leqslant n$, are then given by

$$
\tilde{A}^{(k)}=U \tilde{\Lambda}^{(k)} U^{*} \quad \text { and } \quad \tilde{A}_{0}^{(k)}=U \tilde{\Lambda}_{0}^{(k)} U^{*}, \text { respectively. }
$$

Indeed, if we set $D_{\Lambda}=\operatorname{diag}\left[\operatorname{sign} \lambda_{1}, \operatorname{sign} \lambda_{2}, \ldots, \operatorname{sign} \lambda_{n}\right]$ it follows that $U D_{A} \Sigma_{A} U^{*}$ is the SVD of A with $\Sigma_{A}=D_{A} \Lambda$, and consequently, $\tilde{\Lambda}^{(k)}=D_{\Lambda} \tilde{\Sigma}^{(k)}$ and $\tilde{\Lambda}_{0}^{(k)}=D_{A} \bar{\Sigma}_{0}^{(k)}$, respectively, which proves our claim. A similar statement holds true if we assume $A \in \mathbb{C}^{n \times n}$ to be (complex) symmetric, but let us stick to the Hermitian case.

As we pointed out in our general discussion an approximation in a complex normed vector space X, approximation in X means approximation in X_{r}. For $\mathbb{C}_{r}^{n \times n}$ the subset of Hermitian matrices then forms a linear subspace, say, $\mathbb{H}^{n \times n}$. It follows from above that rank approximation in $\mathbb{H}^{n \times n}$, endowed with the spectral norm, means first rank approximation in $\mathbb{C}^{n \times n}$ and then restricting the results to $\mathbb{H}^{n \times n}$.

On the other hand, instead of dealing with the class $\mathscr{S}_{1}^{(k)} \cap \mathbb{H}^{n \times n}$, $1 \leqslant k \leqslant n$, it seemed to us more natural to replace it by

$$
\begin{gathered}
\mathscr{H}_{1}^{(k)}=\left\{S \in \mathbb{M}^{n \times n}: \sum_{1 \leqslant j_{1} \leqslant j_{2}<\cdots<j_{k} \leqslant n} \lambda_{j_{1}}(S) \lambda_{j_{2}}(S) \cdots \lambda_{j_{k}}(S) \leqslant 1\right\}, \\
1 \leqslant k \leqslant n .
\end{gathered}
$$

For $k=1, \mathscr{H}_{1}^{(1)}$ is just the subset $\left\{S \in \mathbb{H}^{n \times n}: \sum_{j=1}^{n} \lambda_{j}(S) \leqslant 1\right\}$, while for $k=n, \mathscr{H}_{1}^{(n)}=\left\{S \in \mathbb{H}^{n \times n}: \operatorname{det} S \leqslant 1\right\}$. For these two cases we were able to prove that the sets are Chebyshevian; we determined the el. b. appr. for a matrix A in $\mathbb{H}^{n \times n} \backslash \mathscr{H}_{1}^{(n)}$ and $\mathbb{H}^{n \times n} \backslash \mathscr{H}_{1}^{(n)}$, respectively, and verified that the metric projection is globally Lipschitz-continuous. We will spare the reader with details.

REFERENCES

1. J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38(1973), 135-140.
2. Ph. Benilan and H. Attouch, Opérateurs accrétifs, in "Sém. sur les semi-groups et les opérateurs non linéaires," Exposé no. 1., Publ. Math. d'Orsay, Paris, 1970-1971.
3. H. Berens and M. Finzel, A continuous selection of the metric projection in matrix spaces, in "Numerical Methods of Approximation Theory, Vol. 8" (L. Collatz, G. Meinardus, and G. Nürnberger, Eds.), ISNM, Vol. 81, pp. 21-29, 1987; A continuous selection of the metric projection in matrix spaces, Addendum, Numer. Math. 57 (1990), 663-667.
4. H. Berens and H. J. Schmid, An example of a Chebyshev set: The complex case, Rocky Mountain J. Math. 19 (1988), 67-71.
5. P. R. Halmos, Positive approximants of operators, Indiana Math. J. 21 (1972), 951-960.
6. R. A. Horn and Ch. R. Johnson, "Matrix Analysis," Cambridge University Press, Cambridge, 1985.
7. A. G. Robertson, Strongly Chebyshev subspaces of matrices, J. Approx. Theory 55 (1988), 264-269.

[^0]: * The first author was financially supported by the Russian Fund for Basic Researches Pr. 96-01-00212 as well as by a grant from the Bavarian State Government.

