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Let A be a matrix in C"*” and let UXV* be its singular value decompo-
sition. The authors prove that for each 1<k<n the set ¥ ={SeC"*":
Sicy < <jpen 0,(8) 0, (S) -0, (S) < 1} is a Chebyshev set in C"*" endowed with
the spectral norm and that the metric projection is globally Lipschitz-continuous.
© 1999 Academic Press

In the 1980s the senior author studied various problems on matrix
approximation; he was, in particular, interested in Chebyshev sets and
suns. Approximation in matrix spaces proved to be rich in providing
simple, but impressive examples as the papers [ 1,4, 5, 7] show. We want
to take up the results in [ 3, 4], extend, and re-prove them.

We denote by C"*™ the vector space of complex n xm matrices over
C,n,meN, with elements 4, B,... For A€C"*? and BeC?*™ n, m,
peN, A* denotes the adjoint of 4 in C”*” and AB the matrix product of
A and B in C"*™. Instead of C"*' we write C" the vector space of complex
column vectors; we also write z, u, ... to denote its elements.

By /2 we denote C" endowed with the Euclidian norm |-|,, and by #(/2)
the vector space of linear transformations of /2 into itself. #(/2) can
be identified with C"*" endowed with the [/*-operator norm, where
AeC™"" acts on ze C” via the matrix product Az. Since it will not lead to
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any ambiguity, in the following we shall write C" and C"*" instead of /2
and Z(12), respectively.

For an A€ C"*", we denote its singular value decomposition (SVD) by
UXV*, U and V are unitary matrices in C"*”, and X' =diag(o,, g5, ..., 0,),
0,=20,= --- 20,=0. 2 is uniquely determined by A; its elements are the
so-called singular values of A; to indicate the dependence on A4, we will
write 2(A) and o,(A4), g,(A), ..., 5,(A), respectively. If 4 is non-singular,
then UV* is uniquely defined.

Here we will be interested in best approximation on C"*" w.r.t. the
spectral norm. It will, however, be appropriate to consider more generally
unitarily invariant norms || - ||; in particular, we will consider the Schatten
p-norms, where

for all A4eC"*", l4l2=1Z]12= "3 o2.
j=1
For p=1 we speak of the (classical) Schatten norm |-|,, while for
p =0, ||-]l» just denotes the spectral norm on C"*”. Introducing on C"*”

the sesqui-linear form
for all A, BeC"*", (A, B) =trace A*B,

C"*” becomes an inner product space isomorphic to C”. The associated
norm | -|,, the so-called Frobenius norm, is nothing but the 2-norm

for all AeCm=", Y lagP=1413=1Z13= Y o7

Jk=1 j=1

For k=1, 2, .., n, we define

,903“:{5643"“: Y a;,(S) ajz(S)wa,-k(SKl}-

1<jj<jpp<--- <jp<n

If k=1, (" coincides with the /;-unit ball in C"** ie., ¥V ={SeC"*":
ISl <1}, while for k=n 9 {SeC" " : |det S| <1}. It was proved in
[4], that (" is a Chebyshev set in C"*" w.r.t. |- and that the metric
projection PZw is globally Lipschitz-continuous. We will re-prove the
result and extend it; our proof is different and more elementary.

THEOREM. For 1 <k <n, the set ® is a Chebsyshev set in C"™" w.r.t.
the spectral norm.
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More precisely, if AeC"*"\&'® and if UXV* is a SVD of A, then the
distance of A from ¥ is given by

d(k)zmin{t>0: Y (ajl—z)+(ajz—t)+~~-(ajk—z)+=l}.

1<ji<jp< -+ <jp<n

With re N, k <r<n, such that ¢,,;<d® <o,(5,,,=0), and
® = diag[g, —d®, .., 0,—d®,0,..,0],

A® = yE®Y* js the unique element of best approximation of A in & .
Moreover, the metric projection onto ¥ is globally Lipschitz-continuous.

Before we get into proving the theorem, let us remark that the element
of best approximation (briefly, el. b. appr.) is well-defined. It follows from
the result stated below; although it is well known, we consider it worthwile
to point this out.

Let AeC"" A+#0, and let UXV* and XXY* be two SVDs of A, where

2 =d1ag(01, vy G1s Oy ey Ty wey Tpy vy G5, 0, .0, 0),
—_———— ———

n n .

ny+ --- +n,=rank(A4). Then there exist unitary matrices P and Q in C"*",
such that X=UP and Y=VQ, and

P= dlag( Wls L) Wra PO) and Q= dlag( Wla () Wr> QO)s

where Py, Qo, and W;, 1 <j<r, are unitary matrices in C"*™, ny+
rank(A4) =n, and in C"%™*", respectively. If A is nonsingular then UV* = XY*,

To prove the theorem it suffices to consider 2 instead of 4 and to prove
that £® is the el. b. appr. of X in %{¥). Concerning the proof itself, we will
prove more strongly that the strict Kolmogorov condition, namely,

for all Se7, §#3®, min ~ Rg*(S—2®)g<0 (1)

holds, which implies uniqueness.

The following remark is in order. Let X be real or complex, normed vec-
tor space with norm |- |4, and let K be a (closed) subset of X. We denote
the metric projection of X onto K by Pg. For xe X\K and k€ Px(x), k is
said to be a solar point of x in K, if k € Px(x,) for each point x, on the ray
from k through x; clearly, x,=k 4+ t(x —k), te R . If for some subset K of
X each xe X\K has a solar point, then K is said to be a sun in X in the
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sense of L. P. Vlasov. Solar points are best described by use of the semi-
inner product <-,- >, defined on X x X;

for x,yelX,

. % —|x|?
{y, x}szthrgl+ W=max{ Rw, y> 1 wed(x)},

@ is the duality map on X; ie., for each xe X : &(x)={weX*: R{w,x) =
|x|5 = |w|3«}. In the definition we consider X to be a vector space over the
reals; this is often done in approximation theory. To distinguish the com-
plex space X from the space X considered as a real vector space, one
usually writes X,—the subscript, however, will be dropped, when there will
be no confusion. If X is an inner product space, the semi-inner products
reduces to the inner product. The semi-inner product has many properties
similar to the inner product, but it is in general far more restrictive, see,
e.g., [2] for details.

To get back to the characterization of solar points, under the conditions
given above, a point k € K is a solar point for x € X\K if and only if

for all k' ek, 0<<k—=k, x—k); (2)

the condition can be, and will be, interpreted as a Kolmogrov condition. All
this is well-known and well documented.

To conclude the remark, in the finite dimensional setting a Chebyshev
set is a Chebyshev sun, and the metric projection is continuous.

The proof of the theorem is based upon the following lemmas.

LemMa 1. Let X =diag(o,,..,0,),0,= " =0,>0,,,= - 20,=0.
Then

D (X)=co{qq*eC ™ :qeC" x{0}" " and |q|3=0,},

“co” means the (closed) convex hull, and consequently,
for all BeC" ", {(B,2Y, = max Rg*Bgq.

If AeC"™" has UXV* to be its SVD, then @ (A)=U®d (X)V*.

For a proof see [ 3]. Note that we used the subscript oo to indicate that
we consider the spectral norm on C"*".
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Our second lemma is concerned with unitarily invariant norms in
general.

Lemma 2. For any unitarily invariant norm | -| on C"*"

forall A, BeC™ "  |X(A)—X(B)| <|A—BI.

A proof of the basic inequality is, e.g. given in the monograph of
R. A. Horn and Ch. R. Johnson [6, Theorem 7.4.51]. For the Frobenius
norm the inequality is known as the inequality of Hoffmann and Wielandt.

Proof of the Theorem. For the proof we drop the superscript (k); this
will not lead to any confusion.

We shall first prove uniqueness. Under the assumption of the theorem we
have that

Z—§=dlag[d, ...,d, 0r+1""90”]’ O-r+1<d<0-r9

where d denotes the distance of 2 from . By Lemma 1, Kolmogorov’s
condition (2) reads

forall Se9,S#2%,

0<(E—-83x-5y _=d- max Rg* (£ —9)q. (3)
qgeCrx{0}n—r
|Q|2=1

We will use Lemma 2 to conclude that
(E-X(8),X-5y <(E-8x-5>_. (4)
Indeed, XS+t E—2(9)) | <|Z—-Z+4E—-S)|, for all teR,,

and the inequality follows.
Let us assume that Se.% is such that X(S)+# 2. We claim that

0< max R¢*(E—-2(9))q. (5)
qeC x{0},_,
lgl,=1
Since
Y ;(S)-+-0,(S)<1  and Y 6,6, =1,

I1<ji<--- <jp<n I<ji<--- <jp<n
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there is at least one index in {1, .., r}, say, j, for which g, (S)<é,. For
otherwise, for all j 6,<g,(S), but then

1= Y Gj 0 < > 0;,(S) -0, (8)<1,

I1<jj< - <jp<n 1<jj<--- <jp<n

', contradicting the condition X(S)# L.
Hen~ce g,,(S)<d; and for g=e¢;, the jy's natural basis element in C’,
e} (2 —2(S)) e, =0;,—0;,(S)>0, which proves (5). From (5) and (4) we
obtain (3).

implies that for all j 0;(S)=¢

Next assume that Se.% is such that S# X, but X(S)=2%. Assume
Kolmogorov’s condition (3) does not hold; i.e.,

for all ¢geC"x{0}"", Rg* (£ —5) ¢<0. (6)

Setting S=B+iC with B and C Hermitian (B=(S+ S*)/2 and
C= —i(S—S%)/2), then (6) just reads

for all ¢geC’, g*(£,—B,)g<0 or ¢*B,—Z%,)q=>0;
ie., the matrix B,—Z%, is positive semi-definite, where the subscript r
indicates that we restrict the matrix to the rth principal submatrix. This
forces 6,<b;; for 1 <j<r, and consequently,

Y EI<Y 63+ Y bi+ Y by P<IBI3<ISI3=2]3.
j=1 j=1

Jj=r+1 Jj#*k

1213

Hence, all b;; vanish for r +1<j<n as well as all b,,j#k; ie., B=7Z.

Note that R(Z, iC) =0, since C is Hermitian. It follows that ||S|3=
|1£4+iC|2= |22+ |C|2=|2(S)|%=|Z|2, hence C =0, and consequently
S =25 a contradiction.

Thus, the strict Kolmogorov condition (1) is satisfied in both cases,
proving the first part of the theorem. It remains to prove that the metric
projection is globally Lipschitz-continuous. As we remarked above, it is
continuous, but we have more.

Let us at first consider diagonal matrices only, say, 2 and 2’ not in ¥
with el. b. appr. £ and £ and distances d and d’, respectively. Note that
for any 1 <j<n

16, =6 =(0;—d) y —(0j —d") | <|o;—0j| + |d—d'l,



50 ALIMOV AND BERENS

and consequently,
|E =S < |E =25+ /nld—d'|,
but [d—d'| < £ =2, <[ Z— 2|, giving

1IE=5,<2/n 2 =Z|,. (7)

To consider the general situation, let 4, A’ be two matrices in C"*"\.%.
W.lo.g, we may assume that 4A=2X 2% as given above, and that
A' = XE'Y*. Then the metric projection of X and 4’ are £ and XZ'Y*,
respectively. We have to estimate the difference

| E— X2 Y*|

w.r.t. some (unitarily invariant) norm, say the 2-norm again. By the
triangular inequality

IE = XE V¥, <€ = XEYV*|, + | X(E = £) Y¥|,.
For the second term of the right-hand side we have
IXE=E) V= 1E = £, <2/n 12— £, <2/n | Z— A,

The two estimates follow from (7) and Lemma 2, respectively.
To estimate the first term, we take advantage of an estimate obtained in

[3].

Let X and £ and d be given as above, and let ¥+ E= XX Y* be a pertur-
bation of X so that its SVD leaves the singular values unchanged. Then

1€ = XZY*||, < ||E],.
The estimate holds for any £ = diag(é,, ... 6,), 6,=> --- >6,>0, for which
for 1 <j<I<n the inequality 6, + 6,< ;% g, holds. In our case, 6,=0,—d

for 1<j<rand 6,=0 for r+1<j<n, where 7, <d<o,.
As a consequence, we obtain

|1E—XEVH,< | Z— XEYH|,< |2 — XE V¥, + | X(Z' — Z) Y*,
<2z -4,

Adding the two estimates, proves Lipschitz-continuity and completes the
proof of the theorem.
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Instead of the class ¥{, 1 <k <n, let us consider, more generally, the
class

for 0 >0,

yf;"):{SeC"x": Y 7, (S) ajz(S)n-ajk(S)éé}.

1<jj<jp< - <jp<n

It follows from above that &% is a Chebyshev set in C"*" w.r.t. the
spectral norm for each ¢ > 0. Moreover, repeating the proof of Lipschitz-
continuity of the metric projection, we see that it remains unchanged when
we replace PZw by PZw; ie, Pow: C"*" -7 is globally Lipschitz-
continuous with Lipschitz constant independent of 1 <k <n and 0 >0.

If we allow 6 to converge towards zero, the class ¥ converges to

S ={SeC™" :rank S<k—1}.

Trivially, (" just reduces to {0}, while " is the class of singular
matrices.

Let AeC™*"\#, and let UXV* be its SVD. Then, its singular value
o #0 and A ¢ .9 for 6 > 0 sufficiently small. By the theorem the distance
dist,, (4; ¥ is given by

df;k)zmin{t>0: Y (ajl—t)+---(ajk—t)+=5},
1</ < <je<n

and UEV* is the unique el. b. appr. of 4 from % with
30 = diag[o, —dP, .., 0, —dP, 0, .., 0].

Since d{ converges to g, as d — 0+, dist(4; L) =g, and U V* is an
el. b. appr. of 4 in ¥, where £y =diag[o, — 0y, ., 041 — 04, 0, ..., 0].
More precisely,

COROLLARY. For 1 <k <n & is a sun in C" " w.r.t. the spectral norm.
If AeC"™*"\FY and if UXV* is its SVD, then

dist,(4; ¥ )=0,  and UEPV* is a solar point of A in ¥,

E% being diag[ oy — 0y, oy 01— 04, 0, ..., 0.
In addition, C"*"3 A = UXV* > USV* is a Lipschitz-continuous selec-
tion of P .

This re-proves results in [ 3, 4]. In this context we would like to add the
following observation.
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As we remarked above, &{! is just equal to the /;-unit ball 5{" (0) of
Ccm*". 7V being a Chebyshev set in C**" w.r.t. || - |, then means that for
each 4 e C"*"\&\V the distance ball b'J), (4) of A touches 5{" (0) exactly
at Pmln (A4) —b(;il)l) (A) denotes the closled ball centered at 4 with radius
dist., (4; (V). Interpreting this statement right, leads to the following.

COROLLARY. The [ -unit ball b\ (0)={SeC"™":0,(S)<1} is a
Chebyshev set in C"*" w.r.t. the Schatten 1-norm. Moreover, the metric pro-
Jjection is globally Lipschitz-continuous.

We conclude our investigation with the following remarks. Let 4 € C**"
be Hermitian; ie., 4=UAU*, A=diag[l,, A5, .., 4,] and U unitary,
where the A;’s are the eigenvalues of 4 counting their multiplicities and
ordered such that |[A;|>]4,| > --- =|4,|=0. The selected el.’s b. appr. of
A in the classes ¥ and ¥, 1 <k <n, are then given by

A% — yie = and A = UAPU*, respectively.

Indeed, if we set D ,=diag[sign 4, sign 4,, ..., sign 4, ] it follows that
UD,X ,U* is the SVD of A with X,=D,4, and consequently,
AP =D, E® and A =D X", respectively, which proves our claim.
A similar statement holds true if we assume 4 € C"*” to be (complex) sym-
metric, but let us stick to the Hermitian case.

As we pointed out in our general discussion an approximation in a com-
plex normed vector space X, approximation in X means approximation in
X,. For C!*" the subset of Hermitian matrices then forms a linear sub-
space, say, H"*". It follows from above that rank approximation in H"*",
endowed with the spectral norm, means first rank approximation in C"*"
and then restricting the results to H"*".

On the other hand, instead of dealing with the class )~ H"*",
1 <k <n, it seemed to us more natural to replace it by

Jf(lk)z{SelHl””: y 2.(S)/1j2(S)--~/1jk(S)<l},

J1
1<jl<j2< s <JpsSn

1<k<n

For k=1, #{" is just the subset {SeH"*":>"_ | 1,(S)<1}, while for
k=n, #{"={SeH"":det S<1}. For these two cases we were able to
prove that the sets are Chebyshevian; we determined the el. b. appr. for a
matrix 4 in H**"\#{" and H"*"\# (", respectively, and verified that the
metric projection is globally Lipschitz-continuous. We will spare the reader
with details.
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