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Let A be a matrix in Cn_n and let U7V* be its singular value decompo-
sition. The authors prove that for each 1�k�n the set S (k)

1 =[S # Cn_n :
�1�j1< } } } <jk�n _j1

(S) _j2
(S) } } } _jk

(S)�1] is a Chebyshev set in Cn_n endowed with
the spectral norm and that the metric projection is globally Lipschitz-continuous.
� 1999 Academic Press

In the 1980s the senior author studied various problems on matrix
approximation; he was, in particular, interested in Chebyshev sets and
suns. Approximation in matrix spaces proved to be rich in providing
simple, but impressive examples as the papers [1, 4, 5, 7] show. We want
to take up the results in [3, 4], extend, and re-prove them.

We denote by Cn_m the vector space of complex n_m matrices over
C, n, m # N, with elements A, B, ... . For A # Cn_p and B # Cp_m, n, m,
p # N, A* denotes the adjoint of A in Cp_n and AB the matrix product of
A and B in Cn_m. Instead of Cn_1 we write Cn the vector space of complex
column vectors; we also write z, u, ... to denote its elements.

By l 2
n we denote Cn endowed with the Euclidian norm | } |2 , and by L(l 2

n)
the vector space of linear transformations of l 2

n into itself. L(l 2
n) can

be identified with Cn_n endowed with the l 2-operator norm, where
A # Cn_n acts on z # Cn via the matrix product Az. Since it will not lead to
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any ambiguity, in the following we shall write Cn and Cn_n instead of l 2
n

and L(l 2
n), respectively.

For an A # Cn_n, we denote its singular value decomposition (SVD) by
U7V*, U and V are unitary matrices in Cn_n, and 7=diag(_1 , _2 , ..., _n ),
_1�_2� } } } �_n�0. 7 is uniquely determined by A; its elements are the
so-called singular values of A; to indicate the dependence on A, we will
write 7(A) and _1 (A), _2 (A), ..., _n (A), respectively. If A is non-singular,
then UV* is uniquely defined.

Here we will be interested in best approximation on Cn_n w.r.t. the
spectral norm. It will, however, be appropriate to consider more generally
unitarily invariant norms & } &; in particular, we will consider the Schatten
p-norms, where

for all A # Cn_n, &A&p
p=&7&p

p= :
n

j=1

_p
j .

For p=1 we speak of the (classical) Schatten norm & }&1 , while for
p=�, & }&� just denotes the spectral norm on Cn_n. Introducing on Cn_n

the sesqui-linear form

for all A, B # Cn_n, (A, B) =trace A*B,

Cn_n becomes an inner product space isomorphic to Cn2
. The associated

norm & }&2 , the so-called Frobenius norm, is nothing but the 2-norm

for all A # Cn_n, :
n

j, k=1

|ajk |2=&A&2
2=&7&2

2= :
n

j=1

_2
j .

For k=1, 2, ..., n, we define

S (k)
1 ={S # Cn_n : :

1�j1<j2< } } } <jk�n

_j1
(S) _j2

(S) } } } _jk
(S)�1= .

If k=1, S (1)
1 coincides with the l1-unit ball in Cn_n; i.e., S (1)

1 =[S # Cn_n :
&S&1�1], while for k=n S (n)

1 [S # Cn_n : |det S|�1]. It was proved in
[4], that S(n)

1 is a Chebyshev set in Cn_n w.r.t. & }&� and that the metric
projection P�

S 1
(n) is globally Lipschitz-continuous. We will re-prove the

result and extend it; our proof is different and more elementary.

Theorem. For 1�k�n, the set S (k)
1 is a Chebsyshev set in Cn_n w.r.t.

the spectral norm.
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More precisely, if A # Cn_n"S (k)
1 and if U7V* is a SVD of A, then the

distance of A from S (k)
1 is given by

d (k)=min {t>0 : :
1�j1<j2< } } } <jk�n

(_ j1
&t)+ (_j2

&t)+ } } } (_jk
&t)+=1= .

With r # N, k�r�n, such that _r+1<d(k)�_r (_n+1=0), and

7� (k)=diag[_1&d (k), ..., _r&d (k), 0, ..., 0],

A� (k)=U7� (k)V* is the unique element of best approximation of A in S (k)
1 .

Moreover, the metric projection onto S(k)
1 is globally Lipschitz-continuous.

Before we get into proving the theorem, let us remark that the element
of best approximation (briefly, el. b. appr.) is well-defined. It follows from
the result stated below; although it is well known, we consider it worthwile
to point this out.

Let A # Cn_n, A{0, and let U7V* and X7Y* be two SVDs of A, where

7=diag(_1, ..., _1

n1

, _2 , ..., _2

n2

, ..., _r , ..., _r
nr

, 0, ..., 0),

n1+ } } } +nr=rank(A). Then there exist unitary matrices P and Q in Cn_n,
such that X=UP and Y=VQ, and

P=diag( W1 , ..., Wr , P0 ) and Q=diag( W1 , ..., Wr , Q0 ),

where P0 , Q0 , and Wj , 1�j�r, are unitary matrices in Cn0_n0, n0+
rank(A)=n, and in Cnj_nj, respectively. If A is nonsingular then UV*=XY*.

To prove the theorem it suffices to consider 7 instead of A and to prove
that 7� (k) is the el. b. appr. of 7 in S(k)

1 . Concerning the proof itself, we will
prove more strongly that the strict Kolmogorov condition, namely,

for all S # S (k)
1 , S{7� (k), min

q # Cr_[0]n&r
| q |2=1;

Rq*(S&7� (k)) q<0 (1)

holds, which implies uniqueness.

The following remark is in order. Let X be real or complex, normed vec-
tor space with norm | } |X , and let K be a (closed) subset of X. We denote
the metric projection of X onto K by PK . For x # X"K and k # PK (x), k is
said to be a solar point of x in K, if k # PK (xt) for each point xt on the ray
from k through x; clearly, xt=k+t(x&k), t # R+ . If for some subset K of
X each x # X"K has a solar point, then K is said to be a sun in X in the
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sense of L. P. Vlasov. Solar points are best described by use of the semi-
inner product ( }, } ) s defined on X_X;

for x, y # X,

(y, x) s= lim
t � 0+

| x+ty | 2
X&|x| 2

X

2t
=max[ R(w, y) : w # 8(x)],

8 is the duality map on X; i.e., for each x # X : 8(x)=[w # X* : R(w, x) =
|x| 2

X=|w| 2
X* ]. In the definition we consider X to be a vector space over the

reals; this is often done in approximation theory. To distinguish the com-
plex space X from the space X considered as a real vector space, one
usually writes Xr��the subscript, however, will be dropped, when there will
be no confusion. If X is an inner product space, the semi-inner products
reduces to the inner product. The semi-inner product has many properties
similar to the inner product, but it is in general far more restrictive, see,
e.g., [2] for details.

To get back to the characterization of solar points, under the conditions
given above, a point k # K is a solar point for x # X"K if and only if

for all k$ # K, 0�(k&k$, x&k) s ; (2)

the condition can be, and will be, interpreted as a Kolmogrov condition. All
this is well-known and well documented.

To conclude the remark, in the finite dimensional setting a Chebyshev
set is a Chebyshev sun, and the metric projection is continuous.

The proof of the theorem is based upon the following lemmas.

Lemma 1. Let 7=diag(_1 , ..., _n ), _1= } } } =_r>_r+1� } } } �_n�0.
Then

8�(7)=co[qq* # Cr_r : q # Cr_[0]n&r and | q| 2
2=_1 ],

``co'' means the (closed) convex hull, and consequently,

for all B # Cn_n, (B, 7)�= max

q # Cr_[0]n&r

| q |22=_1

Rq*Bq.

If A # Cn_n has U7V* to be its SVD, then 8� (A)=U8� (7)V*.

For a proof see [3]. Note that we used the subscript � to indicate that
we consider the spectral norm on Cn_n.
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Our second lemma is concerned with unitarily invariant norms in
general.

Lemma 2. For any unitarily invariant norm & }& on Cn_n

for all A, B # Cn_n, &7(A)&7(B)&�&A&B&.

A proof of the basic inequality is, e.g. given in the monograph of
R. A. Horn and Ch. R. Johnson [6, Theorem 7.4.51]. For the Frobenius
norm the inequality is known as the inequality of Hoffmann and Wielandt.

Proof of the Theorem. For the proof we drop the superscript (k); this
will not lead to any confusion.

We shall first prove uniqueness. Under the assumption of the theorem we
have that

7&7� =diag[d, ..., d, _r+1 , ..., _n ], _r+1<d�_r ,

where d denotes the distance of 7 from S1 . By Lemma 1, Kolmogorov's
condition (2) reads

for all S # S1 , S{7� ,

0<(7� &S, 7&7� ) �=d } max
|q|2=1

q # Cr_[0]n&r
Rq*(7� &S) q. (3)

We will use Lemma 2 to conclude that

(7� &7(S), 7&7� ) ��(7� &S, 7&7� ) � . (4)

Indeed, &7&7� +t(7� &7(S))&��&7&7� +t(7� &S)&� for all t # R+ ,
and the inequality follows.

Let us assume that S # S1 is such that 7(S){7� . We claim that

0< max
|q|2=1

q # Cr_[0]n&r

Rq*(7� &7(S)) q. (5)

Since

:
1�j1< } } } <jk�n

_ j1
(S) } } } _ jk

(S)�1 and :
1�j1< } } } <jk�n

_~ j1
} } } _~ jk

=1,
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there is at least one index in [1, ..., r], say, j0 for which _j0
(S)<_~ j0

. For
otherwise, for all j _~ j�_j (S), but then

1= :
1�j1< } } } <jk�n

_~ j1
} } } _~ jk

� :
1�j1< } } } <jk�n

_j1
(S) } } } _jk

(S)�1,

implies that for all j _ j (S)=_~ j , contradicting the condition 7(S){7� .
Hence _j0

(S)<_~ j0
and for q=ej0

, the j0's natural basis element in Cr,
e*j0 (7� &7(S)) ej0

=_~ j0
&_ j0

(S)>0, which proves (5). From (5) and (4) we
obtain (3).

Next assume that S # S1 is such that S{7� , but 7(S)=7� . Assume
Kolmogorov's condition (3) does not hold; i.e.,

for all q # Cr_[0]n&r, Rq*(7� &S) q�0. (6)

Setting S=B+iC with B and C Hermitian (B=(S+S*)�2 and
C=&i(S&S*)�2), then (6) just reads

for all q # Cr, q*(7� r&Br ) q�0 or q*(Br&7� r ) q�0;
i.e., the matrix Br&7� r is positive semi-definite, where the subscript r
indicates that we restrict the matrix to the rth principal submatrix. This
forces _~ j�bj j for 1�j�r, and consequently,

&7� &2
2= :

r

j=1

_~ 2
j � :

r

j=1

_~ 2
j + :

n

j=r+1

b 2
j j+ :

j{k

|bjk |2�&B&2
2�&S&2

2=&7� &2
2 .

Hence, all bj j vanish for r+1�j�n as well as all bjk , j{k; i.e., B=7� .
Note that R(7, iC)=0, since C is Hermitian. It follows that &S&2

2=
&7� +iC&2

2=&7� &2
2+&C&2

2=&7(S)&2
2=&7� &2

2 , hence C=0, and consequently
S=7� a contradiction.

Thus, the strict Kolmogorov condition (1) is satisfied in both cases,
proving the first part of the theorem. It remains to prove that the metric
projection is globally Lipschitz-continuous. As we remarked above, it is
continuous, but we have more.

Let us at first consider diagonal matrices only, say, 7 and 7$ not in S1

with el. b. appr. 7� and 7� $ and distances d and d $, respectively. Note that
for any 1�j�n

|_~ j&_~ $j |=|(_j&d)+&(_$j &d $)+|�|_ j&_$j |+|d&d $| ,
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and consequently,

&7� &7� $&2�&7&7$&2+- n | d&d $| ,

but |d&d $|�&7&7$&��&7&7$&2 , giving

&7� &7� $&2�2- n &7&7$&2 . (7)

To consider the general situation, let A, A$ be two matrices in Cn_n"S1 .
W.l.o.g., we may assume that A=7, 7 as given above, and that
A$=XE$Y*. Then the metric projection of 7 and A$ are 7� and X7� $Y*,
respectively. We have to estimate the difference

&7� &X7� $Y*&

w.r.t. some (unitarily invariant) norm, say the 2-norm again. By the
triangular inequality

&7� &X7� $Y*&2�&7� &X7� Y*&2+&X(7� &7� $)Y*&2 .

For the second term of the right-hand side we have

&X(7� &7� $)Y*&2=&7� &7� $&2�2- n &7&7$&2�2- n &7&A$&2 .

The two estimates follow from (7) and Lemma 2, respectively.
To estimate the first term, we take advantage of an estimate obtained in

[3].

Let 7 and 7� and d be given as above, and let 7+E=X7Y* be a pertur-
bation of 7 so that its SVD leaves the singular values unchanged. Then

&7� &X7� Y*&2�&E&2 .

The estimate holds for any 7� =diag(_~ 1 , ..., _~ n ), _~ 1� } } } �_~ n�0, for which
for 1�j�l�n the inequality _~ j\_~ l�_j\_ l holds. In our case, _~ j=_j&d
for 1�j�r and _~ j=0 for r+1�j�n, where _r+1<d�_r .

As a consequence, we obtain

&7� &X7� Y*&2�&7&X7Y*&2�&7&X7$Y*&2+&X(7$&7)Y*&2

�2&7&A$&2 .

Adding the two estimates, proves Lipschitz-continuity and completes the
proof of the theorem.
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Instead of the class S (k)
1 , 1�k�n, let us consider, more generally, the

class

for $>0,

S (k)
$ ={S # Cn_n : :

1�j1<j2< } } } <jk�n

_j1
(S) _j2

(S) } } } _ jk
(S)�$= .

It follows from above that S (k)
$ is a Chebyshev set in Cn_n w.r.t. the

spectral norm for each $>0. Moreover, repeating the proof of Lipschitz-
continuity of the metric projection, we see that it remains unchanged when
we replace P�

S 1
(k) by P�

S $
(k) ; i.e., P�

S 1
(k) : Cn_n � S (k)

$ is globally Lipschitz-
continuous with Lipschitz constant independent of 1�k�n and $>0.

If we allow $ to converge towards zero, the class S (k)
$ converges to

S (k)
0 =[S # Cn_n : rank S�k&1].

Trivially, S (1)
0 just reduces to [0], while S(n)

0 is the class of singular
matrices.

Let A # Cn_n"S (k)
0 , and let U7V* be its SVD. Then, its singular value

_k{0 and A � S (k)
$ for $>0 sufficiently small. By the theorem the distance

dist� (A; S(k)
$ ) is given by

d (k)
$ =min{t>0 : :

1�j1� } } } �jk�n

(_j1
&t)+ } } } (_jk

&t)+=$= ,

and U7� (k)
$ V* is the unique el. b. appr. of A from S (k)

$ with

7� (k)
$ =diag[_1&d (k)

$ , ..., _k&d (k)
$ , 0, ..., 0].

Since d (k)
$ converges to _k as $ � 0+, dist(A; S(k)

0 )=_k and U7� (k)
0 V* is an

el. b. appr. of A in S (k)
0 , where 7� 0=diag[_1&_k , ..., _k&1&_k , 0, ..., 0].

More precisely,

Corollary. For 1�k�n S (k)
0 is a sun in Cn_n w.r.t. the spectral norm.

If A # Cn_n"S (k)
0 and if U7V* is its SVD, then

dist� (A; S(k)
0 )=_k and U7� (k)

0 V* is a solar point of A in S (k)
0 ,

7� (k)
0 being diag[_1&_k , ..., _k&1&_k , 0, ..., 0].
In addition, Cn_n

% A=U7V* [ U7� (k)
0 V* is a Lipschitz-continuous selec-

tion of P�
S 0

(k) .

This re-proves results in [3, 4]. In this context we would like to add the
following observation.
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As we remarked above, S(1)
1 is just equal to the l1-unit ball b� (1)

1 (0) of
Cn_n. S (1)

1 being a Chebyshev set in Cn_n w.r.t. & } &� then means that for
each A # Cn_n"S(1)

1 the distance ball b (�)
S

1
(1) (A) of A touches b� (1)

1 (0) exactly
at PS

1
(1) (A)&b (�)

S
1
(1) (A) denotes the closed ball centered at A with radius

dist� (A; S(1)
1 ). Interpreting this statement right, leads to the following.

Corollary. The l� -unit ball b� (�)
1 (0)=[S # Cn_n : _1 (S)�1] is a

Chebyshev set in Cn_n w.r.t. the Schatten 1-norm. Moreover, the metric pro-
jection is globally Lipschitz-continuous.

We conclude our investigation with the following remarks. Let A # Cn_n

be Hermitian; i.e., A=U4U*, 4=diag[*1 , *2 , ..., *n ] and U unitary,
where the *j 's are the eigenvalues of A counting their multiplicities and
ordered such that |*1 |�|*2 |� } } } �|*n |�0. The selected el.'s b. appr. of
A in the classes S(k)

1 and S (k)
0 , 1�k�n, are then given by

A� (k)=U4� (k)U* and A� (k)
0 =U4� (k)

0 U*, respectively.

Indeed, if we set D4=diag[sign *1 , sign *2 , ..., sign *n ] it follows that
UD4 7A U* is the SVD of A with 7A=D4 4, and consequently,
4� (k)=D47� (k) and 4� (k)

0 =D47� (k)
0 , respectively, which proves our claim.

A similar statement holds true if we assume A # Cn_n to be (complex) sym-
metric, but let us stick to the Hermitian case.

As we pointed out in our general discussion an approximation in a com-
plex normed vector space X, approximation in X means approximation in
Xr . For Cn_n

r the subset of Hermitian matrices then forms a linear sub-
space, say, Hn_n. It follows from above that rank approximation in Hn_n,
endowed with the spectral norm, means first rank approximation in Cn_n

and then restricting the results to Hn_n.
On the other hand, instead of dealing with the class S(k)

1 & Hn_n,
1�k�n, it seemed to us more natural to replace it by

H (k)
1 ={ S # Hn_n : :

1�j1�j2< } } } <jk�n

*j1
(S) *j2

(S) } } } *jk
(S)�1=,

1�k�n.

For k=1, H (1)
1 is just the subset [S # Hn_n : �n

j=1 *j (S)�1], while for
k=n, H (n)

1 =[S # Hn_n : det S�1]. For these two cases we were able to
prove that the sets are Chebyshevian; we determined the el. b. appr. for a
matrix A in Hn_n"H (n)

1 and Hn_n"H (n)
1 , respectively, and verified that the

metric projection is globally Lipschitz-continuous. We will spare the reader
with details.
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